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Outline



• What?

– Discussion of concepts, tools, and papers

– Academic and practitioner perspectives

– Regular cadence to meetings
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Introduction



• Why?

– Increase of computational needs in industry

– A tool for our research

– Our students want to know it 
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Introduction



• Who?

– A community of WPC scholars & friends

– Logistics: Actionable Analytics Lab & Dept. of IS

– Point-of-Contact: Victor.Benjamin@asu.edu
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Introduction

mailto:Victor.Benjamin@asu.edu


• A short survey to help us organize:
– What types of content are you most interested in?

– What is your previous experience?

– How often do you want to meet?

https://wpcareyschool.qualtrics.com/jfe/form/SV_ebpKijcfE3xhWhT
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Introduction

https://wpcareyschool.qualtrics.com/jfe/form/SV_ebpKijcfE3xhWhT


Introduction to Neural Networks

text can go hereXiao Liu

Dept. of Information Systems



• An artificial neural network uses a network of artificial neurons or 
nodes to solve learning problems
– Used for over 50 years to simulate the brain's approach to problem-

solving. 
– In the recent years, the complexity of ANNs has increased so much 

• Now frequently applied to more practical problems including: 
– Speech and handwriting recognition programs: voicemail transcription 

services and postal mail sorting machines  
– The automation of smart devices: self-driving cars and self-piloting 

drones 
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Introduction to Neural Networks



History of Neural Networks

2/3/2020 9https://medium.com/analytics-vidhya/brief-history-of-neural-networks-44c2bf72eec

https://medium.com/analytics-vidhya/brief-history-of-neural-networks-44c2bf72eec


• A professor and head of the Artificial Intelligence Lab at Stanford 
University, Fei-Fei Li launched ImageNet in 2009.
– As of 2017, it’s a very large and free database of more than 14 million 

(14,197,122 at last count) labeled images available to researchers, educators, 
and students.

– Labeled data – such as these images – are needed to “train” neural nets in 
supervised learning.
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2009 – Launch of ImageNet
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• Between 2011 and 2012, Alex Krizhevsky won several international 
machine and deep learning competitions with his creation AlexNet, a 
convolutional neural network.
– AlexNet built off and improved upon LeNet5 (built by Yann LeCun years 

earlier). 

– It initially contained only eight layers – five convolutional followed by three 
fully connected layers – and strengthened the speed and dropout using 
rectified linear units. 

• Its success kicked off a convolutional neural network renaissance in the 
deep learning community.
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2011 – Creation of AlexNet



• Computer scientists at Google built a neural network of 16,000 computer 
processors and let it browse YouTube. 

– Exposed to 10 million randomly selected YouTube video thumbnails over the 
course of three days. 

– Despite being fed no information on distinguishing features, it began to 
recognize pictures of cats. 

– 81.7 percent accuracy in detecting human faces, 76.7 percent accuracy when 
identifying human body parts and 74.8 percent accuracy when identifying cats.

• The network recognized only about 15% of the presented objects. That 
said, it was yet another baby step towards genuine AI.
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2012 – The Cat Experiment



• Developed and released to the world in 2014, Facebook’s deep 
learning system – nicknamed DeepFace

– Trained on the largest facial dataset of four million facial images 
belonging to more than 4,000 identities

– Reaches an accuracy of 97.35% on the Labeled Faces in the Wild (LFW) 
dataset, reducing the error of the current state of the art by more than 
27%, closely approaching human-level performance (reported to be 
97.5%).
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2014 – DeepFace

https://www.jitbit.com/alexblog/260-facebook-is-terrifying/


• 2016: Google’s AlphaGo program beat Lee Sedol of Korea, a 
top-ranked international Go player. 
– Developed by DeepMind, AlphaGo uses machine learning and tree 

search techniques. 

• 2017: AlphaGo beat the #1 ranked Go player Ke Jie in the 
world .

2/3/2020 14

Fun and Games



• Neural networks can be applied to many learning tasks

– Classification 

– Numeric prediction

• Best applied to problems where 

– The input data and output data are well-defined or at least fairly 
simple

– The relationship between the input and output is extremely 
complex. 

15

Introduction to Neural Networks 



• As illustrated in the following figure, incoming signals are received by the cell's 
dendrites through a biochemical process. 
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• As the cell body begins accumulating the incoming signals, a threshold is reached at which the cell fires and the 
output signal is transmitted via an electrochemical process down the axon. 

• At the axon's terminals, the electric signal is again processed as a chemical signal to be passed to the neighboring 
neurons across a tiny gap known as a synapse.

From Biological to Artificial Neurons



• The model of a single artificial neuron can be 
understood in terms very similar to the biological 
model.
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From Biological to Artificial Neurons
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• A relationship between the input signals received by the dendrites (x variables), and the output signal (y 
variable). 

• Each dendrite's signal is weighted (w values) according to its importance. 
• The input signals are summed by the cell body and the signal is passed on according to an activation 

function denoted by f.
• The w weights allow each of the n inputs (denoted by xi) to contribute a greater or lesser amount to the 

sum of input signals.
• The net total is used by the activation function f(x), and the resulting signal, y(x), is the output axon.

From Biological to Artificial Neurons



• Neuron: building block to construct complex models of data. 
• Characteristics of neural networks: 

– An activation function, which transforms a neuron's combined input 
signals into a single output signal to be broadcasted further in the 
network

– A network topology (or architecture), which describes the number of 
neurons in the model as well as the number of layers and manner in 
which they are connected

– The training algorithm that specifies how connection weights are set 
in order to inhibit or excite neurons in proportion to the input signal
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Understanding Neural Networks



• The activation function is the mechanism by which the artificial neuron 
processes incoming information and passes it throughout the network.
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Threshold (unit step) activation function Sigmoid activation function

Activation Function
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Activation Function



• The ability of a neural network to learn is rooted in its topology, or the 
patterns and structures of interconnected neurons. 

• Although there are countless forms of network architectures, they can be 
differentiated by three key characteristics:

– The number of layers

– Whether information in the network is allowed to travel backward

– The number of nodes within each layer of the network
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Network Topology



• To define topology, we need a terminology that distinguishes 
artificial neurons based on their position in the network. 
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Network Topology



• As you might expect, an obvious way to create more complex networks is by adding 
additional layers. 

• The multilayer feedforward network, sometimes called the Multilayer 
Perceptron(MLP). 

• A multilayer network adds one or more hidden layers that process the signals from the 
input nodes prior to it reaching the output node.

• Most multilayer networks are fully connected, which means that every node in one 
layer is connected to every node in the next layer, but this is not required.
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Network Topology



• You may have noticed that in the prior examples, arrowheads were used 
to indicate signals traveling in only one direction. 

• Networks in which the input signal is fed continuously in one direction 
from connection to connection until it reaches the output layer are called 
feedforward networks.
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Network Topology



• In contrast, a recurrent network (or 
feedback network) allows signals to 
travel in both directions using loops.
– This property, which more closely 

mirrors how a biological neural network 
works, allows extremely complex 
patterns to be learned. 

– The addition of a short-term memory, 
or delay, increases the power of 
recurrent networks immensely.
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Network Topology



• INeural networks can also vary in complexity by the number of 
nodes in each layer. 

– The number of input nodes is predetermined by the number of 
features in the input data. 

– The number of output nodes is predetermined by the number of 
outcomes to be modeled or the number of class levels in the 
outcome. 

– The number of hidden nodes is left to the user to decide prior to 
training the model.
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Network Topology



• There is no reliable rule to determine the number of neurons 
in the hidden layer. 
– The appropriate number depends on the number of input nodes, the 

amount of training data, the amount of noisy data, and the complexity 
of the learning task, among many other factors.

– The best practice is to use the fewest nodes that result in adequate 
performance in the test dataset. 
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Network Topology



Training Deep Neural Networks

text can go hereDonghyuk Shin

Dept. of Information Systems
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• Given samples (𝒙𝑖, 𝑦𝑖)𝑖=1,⋯,𝑁,  predict 𝑦𝑡 given a new test point 𝒙𝑡

• Goal is to estimate ො𝑦𝑡 by a linear function of given data 𝒙𝑡:

ො𝑦𝑡 = 𝑤0 +𝑤1𝑥𝑡,1 +𝑤2𝑥𝑡,2 +⋯+𝑤𝑑𝑥𝑡,𝑑 = 𝒘𝑇𝒙𝑡

where 𝒘 is the parameter to be estimated

Linear Regression
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Least Squares

• Loss function: sum squared error

𝐽(𝒘) =
1

2
෍

𝑖=1

𝑁

𝒘𝑇𝒙𝑖− 𝑦𝑖
2
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Normal Equations

• Minimize the sum squared error 𝐽(𝒘)

𝐽(𝒘) =
1

2
෍

𝑖=1

𝑁

𝒘𝑇𝒙𝑖− 𝑦𝑖
2 =

1

2
𝑋𝒘− 𝒚 𝑇(𝑋𝒘− 𝒚)

=
1

2
𝒘𝑇𝑋𝑇𝑋𝒘− 2𝒚𝑇𝑋𝒘+ 𝒚𝑇𝒚

• Derivative:   
𝜕

𝜕𝒘
𝐽(𝒘) = 𝑋𝑇𝑋𝒘− 𝑋𝑇𝒚

• Setting the derivative equal to zero gives the normal equations:

𝑋𝑇𝑋𝒘 = 𝑋𝑇𝒚

𝒘 = 𝑋𝑇𝑋 −1𝑋𝑇𝒚
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Computing 𝒘

• Large-scale data?

• Computing  𝒘 = 𝑋𝑇𝑋 −1𝑋𝑇𝒚 is expensive (matrix inverse): 𝑂 𝑑3

• Storing 𝑋𝑇𝑋 can be prohibitive: 𝑂 𝑑2

• Closed form solution? 

• Deep neural networks?

• Alternatives? → Iterative methods

• Gradient Descent
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Gradient Descent

𝒘

Loss 𝐽(𝒘)

Initial point 𝒘(0)

Start somewhere: 𝒘(0)

• Which way to go?

• How big a step to take?
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Gradient Descent

𝒘

Loss 𝐽(𝒘)

Initial point 𝒘(0)

Start somewhere: 𝒘(0)

• Which way to go?

• How big a step to take?

→ Gradient

Gradient ∇𝐽(𝒘)

• Points in the direction of steepest 

increase (ascent) of 𝐽 𝒘

• Magnitude is the rate of increase

=
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Gradient Descent

𝒘

Loss 𝐽(𝒘)

Minimum ∇𝐽(𝒘) = 0

Initial point 𝒘(0) Gradient ∇𝐽(𝒘)

Incremental 
steps

Start somewhere: 𝒘(0)

1. Compute gradient ∇𝐽(𝒘(𝑡))

2. Descend according to ∇𝐽 𝒘(𝑡)

𝒘(𝑡+1) = 𝒘(𝑡) − 𝛼∇𝐽(𝒘(𝑡))

Repeat until convergence
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Gradient Descent – Neural Networks

Back-propagation 

Algorithm to compute the gradient of 𝐽(𝒘)

Start somewhere: 𝒘(0)

1. Compute gradient ∇𝐽(𝒘(𝑡))

2. Descend according to ∇𝐽 𝒘(𝑡)

𝒘(𝑡+1) = 𝒘(𝑡) − 𝛼∇𝐽(𝒘(𝑡))

Repeat until convergence
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Example Neural Network

1

1

𝑥

𝑤1

𝑤2

𝑤3

𝑤4

𝑤6

𝑤7

1

𝑤5
𝑢1

𝑢2

𝑜1

𝑜2

𝑢3
ො𝑦

∑

∑

∑

Input

Output
(Prediction)

Sigmoid

𝜙 𝑥 =
1

1+ 𝑒−𝑥

Linear
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Feed Forward

1

1

𝑥

𝑤1

𝑤2

𝑤3

𝑤4

𝑤6

𝑤7

1

𝑤5
𝑢1

𝑢2

𝑜1

𝑜2

𝑢3
ො𝑦

∑

∑

∑

𝑜1 =
1

1+𝑒−𝑢1
, where  𝑢1 = 𝑤1 +𝑤2𝑥
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Feed Forward

1

1

𝑥

𝑤1

𝑤2

𝑤3

𝑤4

𝑤6

𝑤7

1

𝑤5
𝑢1

𝑢2

𝑜1

𝑜2

𝑢3
ො𝑦

∑

∑

∑

𝑜1 =
1

1+𝑒−𝑢1
, where  𝑢1 = 𝑤1 +𝑤2𝑥

𝑜2 =
1

1+𝑒−𝑢2
, where  𝑢2 = 𝑤4 + 𝑤3𝑥
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Feed Forward

1

1

𝑥

𝑤1

𝑤2

𝑤3

𝑤4

𝑤6

𝑤7

1

𝑤5
𝑢1

𝑢2

𝑜1

𝑜2

𝑢3
ො𝑦

∑

∑

∑

𝑜1 =
1

1+𝑒−𝑢1
, where  𝑢1 = 𝑤1 +𝑤2𝑥

𝑜2 =
1

1+𝑒−𝑢2
, where  𝑢2 = 𝑤4 + 𝑤3𝑥

ො𝑦 = 𝑤5 +𝑤6𝑜1 + 𝑤7𝑜2
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Back-propagation

1

1

𝑥

𝑤1

𝑤2

𝑤3

𝑤4

𝑤6

𝑤7

1

𝑤5
𝑢1

𝑢2

𝑜1

𝑜2

𝑢3
ො𝑦

∑

∑

∑

𝜕𝐽 𝒘

𝜕𝑤𝑖
= − y − ො𝑦

𝜕 ො𝑦

𝜕𝑤𝑖
𝐽 𝒘 =

1

2
𝑦 − ො𝑦(𝑥,𝒘) 2Loss:

Partial derivative with respect to 𝑤𝑖 :
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Back-propagation

1

1

𝑥

𝑤1

𝑤2

𝑤3

𝑤4

𝑤6

𝑤7

1

𝑤5
𝑢1

𝑢2

𝑜1

𝑜2

𝑢3
ො𝑦

∑

∑

∑

𝜕𝐽 𝒘

𝜕𝑤𝑖
= − y − ො𝑦

𝜕 ො𝑦

𝜕𝑤𝑖
𝐽 𝒘 =

1

2
𝑦 − ො𝑦(𝑥,𝒘) 2

𝜕 ො𝑦

𝜕𝑤5
= 1

𝜕 ො𝑦

𝜕𝑤6
= 𝑜1

𝜕 ො𝑦

𝜕𝑤7
= 𝑜2ො𝑦 = 𝑤5 +𝑤6𝑜1 +𝑤7𝑜2

Loss:

Partial derivative with respect to 𝑤𝑖 :
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Back-propagation

1

1

𝑥

𝑤1

𝑤2

𝑤3

𝑤4

𝑤6

𝑤7

1

𝑤5
𝑢1

𝑢2

𝑜1

𝑜2

𝑢3
ො𝑦

∑

∑

∑

𝜕 ො𝑦

𝜕𝑤3
= ?

ො𝑦 = 𝑤5 +𝑤6𝑜1 +𝑤7𝑜2

𝑜2 =
1

1+𝑒−𝑢2
, where  𝑢2 = 𝑤4 + 𝑤3𝑥
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Back-propagation

1

1

𝑥

𝑤1

𝑤2

𝑤3

𝑤4

𝑤6

𝑤7

1

𝑤5
𝑢1

𝑢2

𝑜1

𝑜2

𝑢3
ො𝑦

∑

∑

∑

𝜕 ො𝑦

𝜕𝑤3
=

𝜕 ො𝑦

𝜕𝑜2

𝜕𝑜2

𝜕𝑢2

𝜕𝑢2

𝜕𝑤3ො𝑦 = 𝑤5 +𝑤6𝑜1 +𝑤7𝑜2
Chain rule!

𝑜2 =
1

1+𝑒−𝑢2
, where  𝑢2 = 𝑤4 + 𝑤3𝑥
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Back-propagation

1

1

𝑥

𝑤1

𝑤2

𝑤3

𝑤4

𝑤6

𝑤7

1

𝑤5
𝑢1

𝑢2

𝑜1

𝑜2

𝑢3
ො𝑦

∑

∑

∑

= 𝑤7 𝑜2 1 − 𝑜2 𝑥

Chain rule!
ො𝑦 = 𝑤5 +𝑤6𝑜1 +𝑤7𝑜2

𝑜2 =
1

1+𝑒−𝑢2
, where  𝑢2 = 𝑤4 + 𝑤3𝑥

𝜕 ො𝑦

𝜕𝑤3
=

𝜕 ො𝑦

𝜕𝑜2

𝜕𝑜2

𝜕𝑢2

𝜕𝑢2

𝜕𝑤3
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Back-propagation

1

1

𝑥

𝑤1

𝑤2

𝑤3

𝑤4

𝑤6

𝑤7

1

𝑤5
𝑢1

𝑢2

𝑜1

𝑜2

𝑢3
ො𝑦

∑

∑

∑

= 𝑤7 𝑜2 1 − 𝑜2 1

Chain rule!
ො𝑦 = 𝑤5 +𝑤6𝑜1 +𝑤7𝑜2

𝑜2 =
1

1+𝑒−𝑢2
, where  𝑢2 = 𝑤4 + 𝑤3𝑥

𝜕 ො𝑦

𝜕𝑤4
=

𝜕 ො𝑦

𝜕𝑜2

𝜕𝑜2

𝜕𝑢2

𝜕𝑢2

𝜕𝑤4
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Back-propagation

1

1

𝑥

𝑤1

𝑤2

𝑤3

𝑤4

𝑤6

𝑤7

1

𝑤5
𝑢1

𝑢2

𝑜1

𝑜2

𝑢3
ො𝑦

∑

∑

∑

𝜕𝐽 𝒘

𝜕𝑤𝑖
= − y − ො𝑦

𝜕ො𝑦

𝜕𝑤𝑖

𝐽 𝒘 =
1

2
𝑦− ො𝑦(𝑥,𝒘) 2Loss:

Full gradient vector
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Gradient Descent – Neural Networks

Feed Forward: compute prediction with current 𝒘

Back-propagation: compute gradient vector

Start somewhere: 𝒘(0)

1. Compute gradient ∇𝐽(𝒘(𝑡))

2. Descend according to ∇𝐽 𝒘(𝑡)

𝒘(𝑡+1) = 𝒘(𝑡) − 𝛼∇𝐽(𝒘(𝑡))

Repeat until convergence

(error)
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Gradient Descent – Learning Rate

Learning rate 𝛼

Start somewhere: 𝒘(0)

1. Compute gradient ∇𝐽(𝒘(𝑡))

2. Descend according to ∇𝐽 𝒘(𝑡)

𝒘(𝑡+1) = 𝒘(𝑡) − 𝛼∇𝐽(𝒘(𝑡))

Repeat until convergence



Stochastic Gradient DescentGradient Descent Mini- Batch Gradient Descent
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Gradient Descent – Batch Size

Batch 

Gradient Descent

• Use entire training data per 

iteration

• Needs very large memory

• Slow per iteration, but may 

need less iterations

Mini-batch 

Gradient Descent

• Use 𝑚 samples from 

training data per iteration

• Similar to SGD, but better 

utilizes GPU/multi-cores

• 𝑚 = 8, 16,32, 64,⋯ , 1024

Stochastic 

Gradient Descent (SGD)

• Use one sample from 

training data per iteration

• Fast per iteration, but may 

require many iterations 

(Going over all training data = 1 epoch)
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Some Issues with Deep Neural Nets

Vanishing / Exploding Gradient

• Gradients at layers close to the input can become very, very small or large

• Initialization with small 𝒘(𝟎)

• Change learning rate 

• Architectural decisions (e.g., ReLU, skip connections)

• Appropriate regularizations

• Gradient clipping (bounding)

• Batch normalization

• Dropouts

Normalize input



Local Minima

• Always a concern, but it turns out that local minima is less of an 

issue (both theoretically and experimentally)

• Large DNNs are so high-dimensional that minima with no 

direction decreasing the loss function are exponentially rare

• Saddle points can be of bigger concern

• Randomness in the gradient helps: SGD, Mini-batch

• Advanced gradient descent algorithms: 

Adagrad, RMSprop, Adam, Nadam, …
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Some Issues with Deep Neural Nets

(local) Minima

Saddle Point
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Python Example with Keras



Advanced Neural Architectures

text can go hereVictor Benjamin

Dept. of Information Systems
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Advanced Neural Architectures

• Today we introduced foundational concepts of neural networks

• Many advanced architectures exist that can each augment the behavior of neural 

networks to enhance their performance for different problem contexts

• We will introduce such architectures today with intention to dedicate future study 

group sessions on exploring them more deeply
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Recurrent Neural Networks

What they can do: Learn from temporal sequence of data

Example: 

Assume the sentence “I went to Japan last summer. I ate a lot of ________ food.” 

Your mind computes a probability distribution of words that can fit the blank. Among the 

most probable solutions is the word “Japanese.”

Recurrent neural networks can use previously learned information to boost their 

performance for predicting the current task. Traditional neural networks cannot do this.

How it’s commonly used: Natural language processing, sequence mining
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Convolutional Neural Networks

What they can do: Learn from visual data

Example: 

Convolutional neural networks take inspiration from the brain structure called the visual cortex. 

The visual cortex possesses small regions of cells that are sensitive to specific regions of the 

visual field. It has been discovered that these clusters of neurons fire systematically in the 

presence of visual stimuli. 

For a given cluster of neurons, individual neurons within that cluster will fire only in the 

presence of edges of a certain orientation. That is, some neurons fire only when exposed to a 

vertical edge, some when shown a horizontal edge or diagonal edge. This idea of neurons 

having specialized tasks is the basis behind CNNs.

How it’s commonly used: Image mining, audio mining
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Reinforcement Learning

What they can do: Maximize success of an objective that requires many steps

Example: 

Imagine you have a pet mouse. You can not communicate with the mouse in human language 

or otherwise directly tell it what to do. You have to follow a different strategy to communicate.

To teach the mouse a trick, you create a scenario and hope the mouse responds in the desired 

manner. Each time the mouse responds correctly, you reward it with a cookie.

Over time, the mouse will learn what sequence of actions to execute to be rewarded with a 

cookie. At the same time, the mouse will learn what sequence of actions are not rewarded.

How it’s commonly used: Attaining complex objectives such as navigating environments
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Generative Adversarial Networks

What they can do: Generate new data that has similar characteristics to input training data

Example: 

Two neural networks train together, with one being the generator and the other being the 

discriminator. For the sake of this example, let’s consider the generator as a “counterfeiter” 

and the discriminator as the “police.”

The counterfeiter takes examples of real currency and continuously makes fake copies. The 

police detect the fake copies. Over time the counterfeiter learns how to improve their fakes 

based on trial-and-error of what gets caught by the police. When the police is no longer able to 

distinguish between what is real and what is fake, the counterfeiter has won. 

Generative adversarial networks operate in the same fashion.

How it’s commonly used: Image synthesis
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Explainable AI

What they can do: Open the AI “black box” and become more interpretable by humans 

Example: 

A society where cooperation between AI and humans can occur is dependent on trust. If 

humans are to fully trust the capabilities of AI such as self-driving cars, personalized medicine, 

manufacturing, etc., they must possess the capability to understand an AI’s reasoning and 

logic behind its actions. 

Further, explainability of AI will become critical for various facets of society to operate. Imagine 

a lawsuit involving some AI-enabled application; telling a court that you did something simply 

because your model told you to do so would be a laughable defense. 

How it’s commonly used: AI transparency, explainable “human-in-the-loop” capabilities
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Concluding today’s session

• First ever WPC AI Study Group! Very cool ☺

• This is an awesome community, let’s keep it going

• An email containing these slides and the survey will follow

• If you want to present a topic, let us know!
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Thank you!

https://research.wpcarey.asu.edu/actionable-analytics/

https://research.wpcarey.asu.edu/actionable-analytics/

