
W.P. Carey
AI Study Group

text can go hereSession #1 - Introduction to Neural Networks
1/31/2020

• Introduction

• Introduction to Neural Networks

• Training Deep Neural Networks

• Advanced Neural Architectures

• Concluding Remarks

2

Outline

• What?

– Discussion of concepts, tools, and papers

– Academic and practitioner perspectives

– Regular cadence to meetings

3

Introduction

• Why?

– Increase of computational needs in industry

– A tool for our research

– Our students want to know it

4

Introduction

• Who?

– A community of WPC scholars & friends

– Logistics: Actionable Analytics Lab & Dept. of IS

– Point-of-Contact: Victor.Benjamin@asu.edu

5

Introduction

mailto:Victor.Benjamin@asu.edu

• A short survey to help us organize:
– What types of content are you most interested in?

– What is your previous experience?

– How often do you want to meet?

https://wpcareyschool.qualtrics.com/jfe/form/SV_ebpKijcfE3xhWhT

6

Introduction

https://wpcareyschool.qualtrics.com/jfe/form/SV_ebpKijcfE3xhWhT

Introduction to Neural Networks

text can go hereXiao Liu

Dept. of Information Systems

• An artificial neural network uses a network of artificial neurons or
nodes to solve learning problems
– Used for over 50 years to simulate the brain's approach to problem-

solving.
– In the recent years, the complexity of ANNs has increased so much

• Now frequently applied to more practical problems including:
– Speech and handwriting recognition programs: voicemail transcription

services and postal mail sorting machines
– The automation of smart devices: self-driving cars and self-piloting

drones

8

Introduction to Neural Networks

History of Neural Networks

2/3/2020 9https://medium.com/analytics-vidhya/brief-history-of-neural-networks-44c2bf72eec

https://medium.com/analytics-vidhya/brief-history-of-neural-networks-44c2bf72eec

• A professor and head of the Artificial Intelligence Lab at Stanford
University, Fei-Fei Li launched ImageNet in 2009.
– As of 2017, it’s a very large and free database of more than 14 million

(14,197,122 at last count) labeled images available to researchers, educators,
and students.

– Labeled data – such as these images – are needed to “train” neural nets in
supervised learning.

2/3/2020 10

2009 – Launch of ImageNet

7

• Between 2011 and 2012, Alex Krizhevsky won several international
machine and deep learning competitions with his creation AlexNet, a
convolutional neural network.
– AlexNet built off and improved upon LeNet5 (built by Yann LeCun years

earlier).

– It initially contained only eight layers – five convolutional followed by three
fully connected layers – and strengthened the speed and dropout using
rectified linear units.

• Its success kicked off a convolutional neural network renaissance in the
deep learning community.

2/3/2020 11

2011 – Creation of AlexNet

• Computer scientists at Google built a neural network of 16,000 computer
processors and let it browse YouTube.

– Exposed to 10 million randomly selected YouTube video thumbnails over the
course of three days.

– Despite being fed no information on distinguishing features, it began to
recognize pictures of cats.

– 81.7 percent accuracy in detecting human faces, 76.7 percent accuracy when
identifying human body parts and 74.8 percent accuracy when identifying cats.

• The network recognized only about 15% of the presented objects. That
said, it was yet another baby step towards genuine AI.

2/3/2020 12

2012 – The Cat Experiment

• Developed and released to the world in 2014, Facebook’s deep
learning system – nicknamed DeepFace

– Trained on the largest facial dataset of four million facial images
belonging to more than 4,000 identities

– Reaches an accuracy of 97.35% on the Labeled Faces in the Wild (LFW)
dataset, reducing the error of the current state of the art by more than
27%, closely approaching human-level performance (reported to be
97.5%).

2/3/2020 13

2014 – DeepFace

https://www.jitbit.com/alexblog/260-facebook-is-terrifying/

• 2016: Google’s AlphaGo program beat Lee Sedol of Korea, a
top-ranked international Go player.
– Developed by DeepMind, AlphaGo uses machine learning and tree

search techniques.

• 2017: AlphaGo beat the #1 ranked Go player Ke Jie in the
world .

2/3/2020 14

Fun and Games

• Neural networks can be applied to many learning tasks

– Classification

– Numeric prediction

• Best applied to problems where

– The input data and output data are well-defined or at least fairly
simple

– The relationship between the input and output is extremely
complex.

15

Introduction to Neural Networks

• As illustrated in the following figure, incoming signals are received by the cell's
dendrites through a biochemical process.

16

• As the cell body begins accumulating the incoming signals, a threshold is reached at which the cell fires and the
output signal is transmitted via an electrochemical process down the axon.

• At the axon's terminals, the electric signal is again processed as a chemical signal to be passed to the neighboring
neurons across a tiny gap known as a synapse.

From Biological to Artificial Neurons

• The model of a single artificial neuron can be
understood in terms very similar to the biological
model.

17

From Biological to Artificial Neurons

18

• A relationship between the input signals received by the dendrites (x variables), and the output signal (y
variable).

• Each dendrite's signal is weighted (w values) according to its importance.
• The input signals are summed by the cell body and the signal is passed on according to an activation

function denoted by f.
• The w weights allow each of the n inputs (denoted by xi) to contribute a greater or lesser amount to the

sum of input signals.
• The net total is used by the activation function f(x), and the resulting signal, y(x), is the output axon.

From Biological to Artificial Neurons

• Neuron: building block to construct complex models of data.
• Characteristics of neural networks:

– An activation function, which transforms a neuron's combined input
signals into a single output signal to be broadcasted further in the
network

– A network topology (or architecture), which describes the number of
neurons in the model as well as the number of layers and manner in
which they are connected

– The training algorithm that specifies how connection weights are set
in order to inhibit or excite neurons in proportion to the input signal

19

Understanding Neural Networks

• The activation function is the mechanism by which the artificial neuron
processes incoming information and passes it throughout the network.

20

Threshold (unit step) activation function Sigmoid activation function

Activation Function

2/3/2020 21

Activation Function

• The ability of a neural network to learn is rooted in its topology, or the
patterns and structures of interconnected neurons.

• Although there are countless forms of network architectures, they can be
differentiated by three key characteristics:

– The number of layers

– Whether information in the network is allowed to travel backward

– The number of nodes within each layer of the network

22

Network Topology

• To define topology, we need a terminology that distinguishes
artificial neurons based on their position in the network.

23

Network Topology

• As you might expect, an obvious way to create more complex networks is by adding
additional layers.

• The multilayer feedforward network, sometimes called the Multilayer
Perceptron(MLP).

• A multilayer network adds one or more hidden layers that process the signals from the
input nodes prior to it reaching the output node.

• Most multilayer networks are fully connected, which means that every node in one
layer is connected to every node in the next layer, but this is not required.

24

Network Topology

• You may have noticed that in the prior examples, arrowheads were used
to indicate signals traveling in only one direction.

• Networks in which the input signal is fed continuously in one direction
from connection to connection until it reaches the output layer are called
feedforward networks.

25

Network Topology

• In contrast, a recurrent network (or
feedback network) allows signals to
travel in both directions using loops.
– This property, which more closely

mirrors how a biological neural network
works, allows extremely complex
patterns to be learned.

– The addition of a short-term memory,
or delay, increases the power of
recurrent networks immensely.

26

Network Topology

• INeural networks can also vary in complexity by the number of
nodes in each layer.

– The number of input nodes is predetermined by the number of
features in the input data.

– The number of output nodes is predetermined by the number of
outcomes to be modeled or the number of class levels in the
outcome.

– The number of hidden nodes is left to the user to decide prior to
training the model.

27

Network Topology

• There is no reliable rule to determine the number of neurons
in the hidden layer.
– The appropriate number depends on the number of input nodes, the

amount of training data, the amount of noisy data, and the complexity
of the learning task, among many other factors.

– The best practice is to use the fewest nodes that result in adequate
performance in the test dataset.

28

Network Topology

Training Deep Neural Networks

text can go hereDonghyuk Shin

Dept. of Information Systems

2/3/2020 30

• Given samples (𝒙𝑖, 𝑦𝑖)𝑖=1,⋯,𝑁, predict 𝑦𝑡 given a new test point 𝒙𝑡

• Goal is to estimate ො𝑦𝑡 by a linear function of given data 𝒙𝑡:

ො𝑦𝑡 = 𝑤0 +𝑤1𝑥𝑡,1 +𝑤2𝑥𝑡,2 +⋯+𝑤𝑑𝑥𝑡,𝑑 = 𝒘𝑇𝒙𝑡

where 𝒘 is the parameter to be estimated

Linear Regression

2/3/2020 31

Least Squares

• Loss function: sum squared error

𝐽(𝒘) =
1

2
෍

𝑖=1

𝑁

𝒘𝑇𝒙𝑖− 𝑦𝑖
2

2/3/2020 32

Normal Equations

• Minimize the sum squared error 𝐽(𝒘)

𝐽(𝒘) =
1

2
෍

𝑖=1

𝑁

𝒘𝑇𝒙𝑖− 𝑦𝑖
2 =

1

2
𝑋𝒘− 𝒚 𝑇(𝑋𝒘− 𝒚)

=
1

2
𝒘𝑇𝑋𝑇𝑋𝒘− 2𝒚𝑇𝑋𝒘+ 𝒚𝑇𝒚

• Derivative:
𝜕

𝜕𝒘
𝐽(𝒘) = 𝑋𝑇𝑋𝒘− 𝑋𝑇𝒚

• Setting the derivative equal to zero gives the normal equations:

𝑋𝑇𝑋𝒘 = 𝑋𝑇𝒚

𝒘 = 𝑋𝑇𝑋 −1𝑋𝑇𝒚

2/3/2020 33

Computing 𝒘

• Large-scale data?

• Computing 𝒘 = 𝑋𝑇𝑋 −1𝑋𝑇𝒚 is expensive (matrix inverse): 𝑂 𝑑3

• Storing 𝑋𝑇𝑋 can be prohibitive: 𝑂 𝑑2

• Closed form solution?

• Deep neural networks?

• Alternatives? → Iterative methods

• Gradient Descent

2/3/2020 34

Gradient Descent

𝒘

Loss 𝐽(𝒘)

Initial point 𝒘(0)

Start somewhere: 𝒘(0)

• Which way to go?

• How big a step to take?

2/3/2020 35

Gradient Descent

𝒘

Loss 𝐽(𝒘)

Initial point 𝒘(0)

Start somewhere: 𝒘(0)

• Which way to go?

• How big a step to take?

→ Gradient

Gradient ∇𝐽(𝒘)

• Points in the direction of steepest

increase (ascent) of 𝐽 𝒘

• Magnitude is the rate of increase

=

2/3/2020 36

Gradient Descent

𝒘

Loss 𝐽(𝒘)

Minimum ∇𝐽(𝒘) = 0

Initial point 𝒘(0) Gradient ∇𝐽(𝒘)

Incremental
steps

Start somewhere: 𝒘(0)

1. Compute gradient ∇𝐽(𝒘(𝑡))

2. Descend according to ∇𝐽 𝒘(𝑡)

𝒘(𝑡+1) = 𝒘(𝑡) − 𝛼∇𝐽(𝒘(𝑡))

Repeat until convergence

2/3/2020 37

Gradient Descent – Neural Networks

Back-propagation

Algorithm to compute the gradient of 𝐽(𝒘)

Start somewhere: 𝒘(0)

1. Compute gradient ∇𝐽(𝒘(𝑡))

2. Descend according to ∇𝐽 𝒘(𝑡)

𝒘(𝑡+1) = 𝒘(𝑡) − 𝛼∇𝐽(𝒘(𝑡))

Repeat until convergence

2/3/2020 38

Example Neural Network

1

1

𝑥

𝑤1

𝑤2

𝑤3

𝑤4

𝑤6

𝑤7

1

𝑤5
𝑢1

𝑢2

𝑜1

𝑜2

𝑢3
ො𝑦

∑

∑

∑

Input

Output
(Prediction)

Sigmoid

𝜙 𝑥 =
1

1+ 𝑒−𝑥

Linear

2/3/2020 39

Feed Forward

1

1

𝑥

𝑤1

𝑤2

𝑤3

𝑤4

𝑤6

𝑤7

1

𝑤5
𝑢1

𝑢2

𝑜1

𝑜2

𝑢3
ො𝑦

∑

∑

∑

𝑜1 =
1

1+𝑒−𝑢1
, where 𝑢1 = 𝑤1 +𝑤2𝑥

2/3/2020 40

Feed Forward

1

1

𝑥

𝑤1

𝑤2

𝑤3

𝑤4

𝑤6

𝑤7

1

𝑤5
𝑢1

𝑢2

𝑜1

𝑜2

𝑢3
ො𝑦

∑

∑

∑

𝑜1 =
1

1+𝑒−𝑢1
, where 𝑢1 = 𝑤1 +𝑤2𝑥

𝑜2 =
1

1+𝑒−𝑢2
, where 𝑢2 = 𝑤4 + 𝑤3𝑥

2/3/2020 41

Feed Forward

1

1

𝑥

𝑤1

𝑤2

𝑤3

𝑤4

𝑤6

𝑤7

1

𝑤5
𝑢1

𝑢2

𝑜1

𝑜2

𝑢3
ො𝑦

∑

∑

∑

𝑜1 =
1

1+𝑒−𝑢1
, where 𝑢1 = 𝑤1 +𝑤2𝑥

𝑜2 =
1

1+𝑒−𝑢2
, where 𝑢2 = 𝑤4 + 𝑤3𝑥

ො𝑦 = 𝑤5 +𝑤6𝑜1 + 𝑤7𝑜2

2/3/2020 42

Back-propagation

1

1

𝑥

𝑤1

𝑤2

𝑤3

𝑤4

𝑤6

𝑤7

1

𝑤5
𝑢1

𝑢2

𝑜1

𝑜2

𝑢3
ො𝑦

∑

∑

∑

𝜕𝐽 𝒘

𝜕𝑤𝑖
= − y − ො𝑦

𝜕 ො𝑦

𝜕𝑤𝑖
𝐽 𝒘 =

1

2
𝑦 − ො𝑦(𝑥,𝒘) 2Loss:

Partial derivative with respect to 𝑤𝑖 :

2/3/2020 43

Back-propagation

1

1

𝑥

𝑤1

𝑤2

𝑤3

𝑤4

𝑤6

𝑤7

1

𝑤5
𝑢1

𝑢2

𝑜1

𝑜2

𝑢3
ො𝑦

∑

∑

∑

𝜕𝐽 𝒘

𝜕𝑤𝑖
= − y − ො𝑦

𝜕 ො𝑦

𝜕𝑤𝑖
𝐽 𝒘 =

1

2
𝑦 − ො𝑦(𝑥,𝒘) 2

𝜕 ො𝑦

𝜕𝑤5
= 1

𝜕 ො𝑦

𝜕𝑤6
= 𝑜1

𝜕 ො𝑦

𝜕𝑤7
= 𝑜2ො𝑦 = 𝑤5 +𝑤6𝑜1 +𝑤7𝑜2

Loss:

Partial derivative with respect to 𝑤𝑖 :

2/3/2020 44

Back-propagation

1

1

𝑥

𝑤1

𝑤2

𝑤3

𝑤4

𝑤6

𝑤7

1

𝑤5
𝑢1

𝑢2

𝑜1

𝑜2

𝑢3
ො𝑦

∑

∑

∑

𝜕 ො𝑦

𝜕𝑤3
= ?

ො𝑦 = 𝑤5 +𝑤6𝑜1 +𝑤7𝑜2

𝑜2 =
1

1+𝑒−𝑢2
, where 𝑢2 = 𝑤4 + 𝑤3𝑥

2/3/2020 45

Back-propagation

1

1

𝑥

𝑤1

𝑤2

𝑤3

𝑤4

𝑤6

𝑤7

1

𝑤5
𝑢1

𝑢2

𝑜1

𝑜2

𝑢3
ො𝑦

∑

∑

∑

𝜕 ො𝑦

𝜕𝑤3
=

𝜕 ො𝑦

𝜕𝑜2

𝜕𝑜2

𝜕𝑢2

𝜕𝑢2

𝜕𝑤3ො𝑦 = 𝑤5 +𝑤6𝑜1 +𝑤7𝑜2
Chain rule!

𝑜2 =
1

1+𝑒−𝑢2
, where 𝑢2 = 𝑤4 + 𝑤3𝑥

2/3/2020 46

Back-propagation

1

1

𝑥

𝑤1

𝑤2

𝑤3

𝑤4

𝑤6

𝑤7

1

𝑤5
𝑢1

𝑢2

𝑜1

𝑜2

𝑢3
ො𝑦

∑

∑

∑

= 𝑤7 𝑜2 1 − 𝑜2 𝑥

Chain rule!
ො𝑦 = 𝑤5 +𝑤6𝑜1 +𝑤7𝑜2

𝑜2 =
1

1+𝑒−𝑢2
, where 𝑢2 = 𝑤4 + 𝑤3𝑥

𝜕 ො𝑦

𝜕𝑤3
=

𝜕 ො𝑦

𝜕𝑜2

𝜕𝑜2

𝜕𝑢2

𝜕𝑢2

𝜕𝑤3

2/3/2020 47

Back-propagation

1

1

𝑥

𝑤1

𝑤2

𝑤3

𝑤4

𝑤6

𝑤7

1

𝑤5
𝑢1

𝑢2

𝑜1

𝑜2

𝑢3
ො𝑦

∑

∑

∑

= 𝑤7 𝑜2 1 − 𝑜2 1

Chain rule!
ො𝑦 = 𝑤5 +𝑤6𝑜1 +𝑤7𝑜2

𝑜2 =
1

1+𝑒−𝑢2
, where 𝑢2 = 𝑤4 + 𝑤3𝑥

𝜕 ො𝑦

𝜕𝑤4
=

𝜕 ො𝑦

𝜕𝑜2

𝜕𝑜2

𝜕𝑢2

𝜕𝑢2

𝜕𝑤4

2/3/2020 48

Back-propagation

1

1

𝑥

𝑤1

𝑤2

𝑤3

𝑤4

𝑤6

𝑤7

1

𝑤5
𝑢1

𝑢2

𝑜1

𝑜2

𝑢3
ො𝑦

∑

∑

∑

𝜕𝐽 𝒘

𝜕𝑤𝑖
= − y − ො𝑦

𝜕ො𝑦

𝜕𝑤𝑖

𝐽 𝒘 =
1

2
𝑦− ො𝑦(𝑥,𝒘) 2Loss:

Full gradient vector

2/3/2020 49

Gradient Descent – Neural Networks

Feed Forward: compute prediction with current 𝒘

Back-propagation: compute gradient vector

Start somewhere: 𝒘(0)

1. Compute gradient ∇𝐽(𝒘(𝑡))

2. Descend according to ∇𝐽 𝒘(𝑡)

𝒘(𝑡+1) = 𝒘(𝑡) − 𝛼∇𝐽(𝒘(𝑡))

Repeat until convergence

(error)

2/3/2020 50

Gradient Descent – Learning Rate

Learning rate 𝛼

Start somewhere: 𝒘(0)

1. Compute gradient ∇𝐽(𝒘(𝑡))

2. Descend according to ∇𝐽 𝒘(𝑡)

𝒘(𝑡+1) = 𝒘(𝑡) − 𝛼∇𝐽(𝒘(𝑡))

Repeat until convergence

Stochastic Gradient DescentGradient Descent Mini- Batch Gradient Descent

2/3/2020 51

Gradient Descent – Batch Size

Batch

Gradient Descent

• Use entire training data per

iteration

• Needs very large memory

• Slow per iteration, but may

need less iterations

Mini-batch

Gradient Descent

• Use 𝑚 samples from

training data per iteration

• Similar to SGD, but better

utilizes GPU/multi-cores

• 𝑚 = 8, 16,32, 64,⋯ , 1024

Stochastic

Gradient Descent (SGD)

• Use one sample from

training data per iteration

• Fast per iteration, but may

require many iterations

(Going over all training data = 1 epoch)

2/3/2020 52

Some Issues with Deep Neural Nets

Vanishing / Exploding Gradient

• Gradients at layers close to the input can become very, very small or large

• Initialization with small 𝒘(𝟎)

• Change learning rate

• Architectural decisions (e.g., ReLU, skip connections)

• Appropriate regularizations

• Gradient clipping (bounding)

• Batch normalization

• Dropouts

Normalize input

Local Minima

• Always a concern, but it turns out that local minima is less of an

issue (both theoretically and experimentally)

• Large DNNs are so high-dimensional that minima with no

direction decreasing the loss function are exponentially rare

• Saddle points can be of bigger concern

• Randomness in the gradient helps: SGD, Mini-batch

• Advanced gradient descent algorithms:

Adagrad, RMSprop, Adam, Nadam, …

2/3/2020 53

Some Issues with Deep Neural Nets

(local) Minima

Saddle Point

2/3/2020 54

Python Example with Keras

Advanced Neural Architectures

text can go hereVictor Benjamin

Dept. of Information Systems

2/3/2020 56

Advanced Neural Architectures

• Today we introduced foundational concepts of neural networks

• Many advanced architectures exist that can each augment the behavior of neural

networks to enhance their performance for different problem contexts

• We will introduce such architectures today with intention to dedicate future study

group sessions on exploring them more deeply

2/3/2020 57

Recurrent Neural Networks

What they can do: Learn from temporal sequence of data

Example:

Assume the sentence “I went to Japan last summer. I ate a lot of ________ food.”

Your mind computes a probability distribution of words that can fit the blank. Among the

most probable solutions is the word “Japanese.”

Recurrent neural networks can use previously learned information to boost their

performance for predicting the current task. Traditional neural networks cannot do this.

How it’s commonly used: Natural language processing, sequence mining

2/3/2020 58

Convolutional Neural Networks

What they can do: Learn from visual data

Example:

Convolutional neural networks take inspiration from the brain structure called the visual cortex.

The visual cortex possesses small regions of cells that are sensitive to specific regions of the

visual field. It has been discovered that these clusters of neurons fire systematically in the

presence of visual stimuli.

For a given cluster of neurons, individual neurons within that cluster will fire only in the

presence of edges of a certain orientation. That is, some neurons fire only when exposed to a

vertical edge, some when shown a horizontal edge or diagonal edge. This idea of neurons

having specialized tasks is the basis behind CNNs.

How it’s commonly used: Image mining, audio mining

2/3/2020 59

Reinforcement Learning

What they can do: Maximize success of an objective that requires many steps

Example:

Imagine you have a pet mouse. You can not communicate with the mouse in human language

or otherwise directly tell it what to do. You have to follow a different strategy to communicate.

To teach the mouse a trick, you create a scenario and hope the mouse responds in the desired

manner. Each time the mouse responds correctly, you reward it with a cookie.

Over time, the mouse will learn what sequence of actions to execute to be rewarded with a

cookie. At the same time, the mouse will learn what sequence of actions are not rewarded.

How it’s commonly used: Attaining complex objectives such as navigating environments

2/3/2020 60

Generative Adversarial Networks

What they can do: Generate new data that has similar characteristics to input training data

Example:

Two neural networks train together, with one being the generator and the other being the

discriminator. For the sake of this example, let’s consider the generator as a “counterfeiter”

and the discriminator as the “police.”

The counterfeiter takes examples of real currency and continuously makes fake copies. The

police detect the fake copies. Over time the counterfeiter learns how to improve their fakes

based on trial-and-error of what gets caught by the police. When the police is no longer able to

distinguish between what is real and what is fake, the counterfeiter has won.

Generative adversarial networks operate in the same fashion.

How it’s commonly used: Image synthesis

2/3/2020 61

Explainable AI

What they can do: Open the AI “black box” and become more interpretable by humans

Example:

A society where cooperation between AI and humans can occur is dependent on trust. If

humans are to fully trust the capabilities of AI such as self-driving cars, personalized medicine,

manufacturing, etc., they must possess the capability to understand an AI’s reasoning and

logic behind its actions.

Further, explainability of AI will become critical for various facets of society to operate. Imagine

a lawsuit involving some AI-enabled application; telling a court that you did something simply

because your model told you to do so would be a laughable defense.

How it’s commonly used: AI transparency, explainable “human-in-the-loop” capabilities

62

Concluding today’s session

• First ever WPC AI Study Group! Very cool ☺

• This is an awesome community, let’s keep it going

• An email containing these slides and the survey will follow

• If you want to present a topic, let us know!

63

Thank you!

https://research.wpcarey.asu.edu/actionable-analytics/

https://research.wpcarey.asu.edu/actionable-analytics/

